MATHEMATICS OF COMPUTATION
VOLUME 37, NUMBER 156
OCTOBER 1981

Semigroups, Antiautomorphisms, and Involutions:
A Computer Solution to an Open Problem, I*

By S. K. Winker, L. Wos and E. L. Lusk

Abstract. An antiautomorphism H of a semigroup S is a 1-1 mapping of S onto itself such
that H(xy) = H(y)H(x) for all x,y in S. An antiautomorphism H is an involution if
H?*(x) = x for all x in §. In this paper the following question is answered: Does there exist a
finite semigroup with antiautomorphism but no involution? This question, suggested by L.
Kaplansky, was answered in the affirmative with the aid of an automated theorem-proving
program. More precisely, there are exactly four such semigroups of order seven and none of
smaller order. The program was a completely general one, and did not calculate the solution
directly, but rather rendered invaluable assistance to the mathematicians investigating the
question by helping to generate and examine various models. A detailed discussion of the
approach is presented, with the intention of demonstrating the usefulness of a theorem
prover in carrying out certain types of mathematical research.

1. Introduction. This paper has three objectives. The first is to present an answer
to an open question concerning antiautomorphisms of finite semigroups. The
second is to describe some functions of a general-purpose automated theorem
prover and show how it was used in the investigation of this question. Finally, we
wish to solicit other significant questions of a similar nature. Indeed, since no
additional programming was required for the attack on this problem, those who
understand the techniques presented here should be able to use our theorem-
proving system for their own purposes. Since the paper is addressed to groups with
widely differing backgrounds, it is written at an elementary level throughout.

1.1. The Results. There is a finite semigroup which supports an antiautomor-
phism but no involution. All necessary definitions are given in Section 2.1, one
such semigroup is given in Section 2.2, and a small example (order 7) is given in
Section 2.3. The theorem-proving techniques used in the discovery of this example
are described in detail in this paper.

There are exactly four semigroups of order 7 having the above property and no
smaller semigroups with this property. The techniques used in arriving at this result
are very different from those used in the first part of the investigation and will be
described in a later paper.

Received June 9, 1980; revised January 28, 1981 and March 13, 1981.

1980 Mathematics Subject Classification. Primary 20MO05, 20M15; Secondary 03B35.

Key words and phrases. Finite semigroups, involutions, antiautomorphisms, automated theorem-
proving.

* This work was supported in part by the Applied Mathematical Sciences Research Program
(KC-04-02) of the Office of Energy Research of the U. S. Department of Energy under Contract
W-31-109-Eng-38 (Argonne National Laboratory, Argonne, Illinois 60439) and in part by NSF grant
#MCS 79-03870 (Northern Illinois University, DeKalb, Illinois 60115).

© 1981 American Mathematical Society
0025-5718/81/0000-0171/$04.25

533

534 S. K. WINKER, L. WOS AND E. L. LUSK

1.2. The Theorem Prover. The theorem prover used here is a general-purpose
resolution-based program developed over the past eight years at Northern Illinois
University and Argonne National Laboratory. Nothing was added to the program
to orient it towards this particular problem, nor towards algebra in general. Rather,
a collection of nonstandard input statements was prepared which caused the
program to generate and check models instead of deriving a contradiction from the
input, which is how it has traditionally been used. Particular use was made of the
program’s capabilities for dealing with equality. Some fundamental theorem-
proving concepts are presented in Section 3 for those unfamiliar with automated
theorem proving, and the technique used to cause the theorem prover to generate
and check models is described in detail in Section 4.

1.3. Solicitation of Problems. Theorem-proving technology has advanced slowly
over the last fifteen years, but has now reached the state of being able to do more
than simple exercises. The authors believe that for a limited class of problems
theorem provers can be of real use to mathematicians and other researchers whose
calculations are algebraic and logical rather than numerical. The project described
here is offered as an example of such use. Several investigations of a similar nature
are currently under way, and more problems which might yield to computer-aided
attack are solicited. Some success on such problems in a field different from the
one described here is described in [6].

2. The Main Result. In this section, we present the relevant definitions, some
lemmas, and the technique used to find the desired semigroup. We will describe
which parts of the process were assisted by the theorem prover but will defer to a
later section the discussion of exactly how it was used.

2.1. Definitions and Lemmas.

Definition. A semigroup S is a nonempty set together with an associative binary
operation § X S — S.

Definition. An automorphism K of a semigroup S is a 1-1 map of S onto S such
that for all x, y in S, K(x)K(y) = K(xy). An antiautomorphism H of S is a 1-1 map
of S onto S such that for all x, y in S, H(xy) = H(y)H(x). An antiautomorphism
is nontrivial if it is not an automorphism.

Definition. A (nontrivial) involution J of a semigroup S is a (nontrivial) antiauto-
morphism of S such that J2 = 1, the identity map.

Remark. It is easy to see that if H is a (nontrivial) antiautomorphism, then H* is
an automorphism for even k£ and a (nontrivial) antiautomorphism for odd k. Since
the identity map is an automorphism, the order of a nontrivial antiautomorphism
must always be even. Furthermore, if H has order 2n, then H" is either a nontrivial
involution or an automorphism of order 2 depending on whether » is odd or even.
This observation motivates the following question, communicated to us by I.
Kaplansky.

Question. Does there exist a finite semigroup which has a nontrivial antiautomor-
phism but no nontrivial involution?

Note that if such a semigroup exists then by the remark above, the order of the
antiautomorphism must be a multiple of four.

2.2. Techniques for Solution. Since we are attempting not only to answer the
question but also to demonstrate how the theorem prover was used in the

SEMIGROUPS, ANTIAUTOMORPHISMS, AND INVOLUTIONS 535

investigation, we present here a relatively detailed account of our approach to
investigating the question.

Suppose that the answer to the question is yes, and that H is the antiautomor-
phism. Since the order of H is a multiple of 4, the semigroup contains distinct
elements B, C, D, and E such that H(B) = C, H(C) = D, and HD)=E. If H
has order 4, then such elements exist with H(E) = B.

We begin by making a number of assumptions about the desired semigroup S
and its antiautomorphism H. We do this not without loss of generality but as a first
move. The first assumption is that H has order 4. (Fortunately, a solution to the
problem can be found with this condition. If this had not happened, the technique
outlined here could still have been used, but more computer time would have been
required.) We assume further that S is generated by the elements B, C, D, and E
which cycle under H.

Finally, we need to introduce relations which will make the semigroup finite.
One particularly straightforward way to do this is to assume that all products of
more than a certain number of elements are identical. This has the additional
benefit of making it unnecessary for the theorem prover to deal with terms beyond
a specified complexity. In this investigation it was assumed that all products of four
or more elements were identical. It turned out that this allowed sufficient complex-
ity for the desired example to be found within the limits imposed by this restriction.

The assumptions above provide us with a semigroup of order 85 which supports
a nontrivial antiautomorphism.

Unfortunately, involutions abound. For example, one can construct a nontrivial
involution by extending the mapping which exchanges two of the generators and
leaves the others fixed. The plan of attack on the problem, then, is to adjoin to the
current set of relations which define S (those that make all products of four or
more elements identical) more relations, so chosen as to block the existence of an
involution while preserving the existence of an antiautomorphism.

By adjoining relations to S we are forming a quotient semigroup S’, consisting of
the equivalence classes of elements of S under the relations. The antiautomorphism
H on S can be defined on the quotient semigroup as follows. Let p: S — S’ be the
natural projection of S onto S’. Define H'(p(x)) = p(H(x)). This makes sense as
long as it is true that for all x and y in S, p(x) = p(y) implies p(H(x)) = p(H(y)).

The computer helps most in examining the consequences of adding a given
relation. The first type of consequence, as described in the preceding paragraph, is
that the addition of a relation R requires that the relations H(R), H*(R), and
H3(R) be added as well. (For example, adding the relation BC = CDD requires
addition of DC = EED, DE = EBB, and BE = CCB. This is done automatically
by the theorem prover, as will be explained below. Secondly, adding a relation may
force the addition of yet more relations to keep the operation in S well-defined.
For example, adding BB = DD forces us to add EBB = EDD, etc.) The theorem
prover automatically provided these additional relations. Finally, once a set of
relations was chosen, the theorem prover automatically tested the resulting semi-
group for the presence of involutions.

The selection of a set of relations can either be automated or left to the
investigator. In order to provide some insight into the first solution of the problem,

536 S. K. WINKER, L. WOS AND E. L. LUSK

we present here some observations which led us to the right choice of relations.
Even in this phase, the theorem prover provided moral support in that the effects of
any choice could always be easily and reliably checked.

Let us consider the original semigroup .S of order 85 and what relations to add in
order to block the existence of involutions. Each possible involution falls into at
least one of the following three classes:

(i) those which interchange at least two of the generators,

(ii) those which interchange a generator with a nongenerator,

(iii) those which fix all four generators.

We can block involutions of the second class by avoiding the addition of relations
which allow a generator to be written as a product. To see this, suppose that J is an
involution which interchanges, say, B with CD. Then B =J* B) = J(CD) =
J(D)J(C), and B has been written as a product.

Consider next an involution J of the third class. The presence, for some X and Y,
of the relation BBX = DDY requires the addition of the relation J(X)BB =
J(Y)DD. Thus, if we can find a relation of the form BBX = DDY, which does not
yield one of the form ZBB = WDD when all required relations are added, this will
block involutions of the third class.

Similarly one can examine the consequences of the existence of an involution of
the first class in the presence of some proposed relation by considering the various
possible interchanges between two generators.

Such considerations can greatly narrow the search for the desired relations. The
theorem prover assists by automatically generating the set of relations implied by a
given choice, and by checking for involutions. The exact technique by which the
theorem prover is made to do this is described in Section 4.

Let R be the relation BBC = DDE. Then since H*(R) = R, the only additional
relation which must be added is H(R), namely DCC = BEE. As noted above,
there cannot be any involutions of the second or third class. To see that there
cannot be any of the first class, observe that any exchange of generators will
introduce more relations. This establishes the existence of a finite semigroup S (of
order 83) which has an antiautomorphism (inherited from the antiautomorphism H
of §) but no nontrivial involutions. The computer-assisted search for a smaller
example will be described in the next section.

2.3. The Solution of Order 7. The search for smaller examples of semigroups
having the desired property consisted of adding relations to this semigroup of order
83. The theorem prover facilitated experimentation by quickly and accurately
calculating the consequence of adding any set of relations. Thus experience was
gained which led eventually to the following set of relations:

(1) All products of three or more elements are equal to BD,

(2) BD = CE = EC = CB,

(3) BB = DD = BC.

Other equalities were derived by the theorem prover from these, in accordance with
the considerations described above.

The elements of the resulting semigroup are represented by the equivalence
classes of B, C, D, E, BD, BB, BE. If we name these equivalence classes a, b, ¢, d,

SEMIGROUPS, ANTIAUTOMORPHISMS, AND INVOLUTIONS 537

e, f, and g, respectively, the multiplication table of the semigroup is as follows: **

a b ¢ d e f g
alf f e g e e ¢ The antiautomorphism 4 acts as follows:
ble g e e e e e
cle g f f e e e h(a)=b h(b)=c h(c)=d
dle e e g e e e h(d)=a h(e)=e h(f)=g¢g
ele e e e e e e h(g)=f
fle e e e e e e
gle e e e e e e

3. An Introduction to Automated Theorem Proving. In this section we described in
some detail how the theorem prover was used in the investigation described in
Section 2. We begin by giving a brief informal overview of standard terminology
and techniques, intended for the reader who is totally unfamiliar with automated
theorem proving. A more formal and complete treatment may be found in [1].
Then we will show how these techniques and some nonstandard ones were used to
extend sets of relations and check for the presence of involutions.

A theorem prover is a program which accepts as input statements in the
first-order predicate calculus. Its output consists of statements in the first-order
predicate calculus which are derivable from the input statements by means of one
or more standard inference rules (such as modus ponens). Several formalisms and
inference systems have been developed. The one on which the theorem prover used
here is based is called resolution.

3.1. Normal Forms. For our purposes any statement in first-order predicate
calculus can be replaced by a conjunction of disjunctions, in which each disjunc-
tion has the property that all variables are universally quantified. For example, the
statement VX3Y(P(X, Y) — Q(X)) becomes (VX)(=P(X, F(X))V Q(X)). The
function F which chooses a Y for each X is called a Skolem function. A statement
which consists of such a conjunction of disjunctions is said to be in normal form.
The disjunctions themselves are called clauses, and the disjuncts are its literals. We
consider a list of clauses to represent the conjunction of those clauses, and we omit
the universal quantifiers and the disjunction symbols from the representation, since
they are redundant. Hence the statement above can be represented as a clause as
follows:

CL =P(X, F(X)) Q(X).
we prefix clauses by “CL” in order to distinguish them from other expressions. In
the next section, we describe how new clauses are derived from existing ones.

3.2. Resolution and Hyperresolution. Two literals are said to be unifiable if they
have a common instance; that is, if there are substitutions for the variables of each
which make them identical. The scope of a variable is exactly the clause in which it
occurs. Suppose we have two clauses of the form

CL L1 L2
CL L3

** The three additional semigroups of order seven of the desired type are found in the Appendix.

538 S. K. WINKER, L. WOS AND E. L. LUSK

and suppose that L1 and L3 are unifiable. Then modus ponens allows us to derive
the clause CL L2, with the same substitution applied to the variables of L2 which
was applied to those in L1 in order to unify it with L3. More generally, any two
clauses containing unifiable literals of opposite sign can be used to derive a third
clause consisting of all the literals in both clauses except the two matching ones,
with the appropriate substitutions applied. Such a derivation is called a clash of the
two clauses. For example, the clauses

CL —P(F(X),4) Q(X),
CL P(F(B), Y) R(Y),
in which X and Y represent variables, can be clashed to derive
CL Q(B) R(A).

The inference rule described above (clashing pairs of clauses containing comple-
mentary literals) is called binary resolution. A different inference rule, which
replaces particular sequences of binary resolutions by a single derivation, is called
hyperresolution. It functions as follows. A clause containing both positive and
negative literals is clashed against a set of clauses containing all positive literals
until all of its negative literals are gone. For example, from the clauses

CL —-P(X,Y,2) -Q0X,Y,Z2) S(X,Y,2),
CL P(4, B, X) R(A),
CL 9Q(X,7Y,C),
the clause CL S(4, B, C) R(A) is derived.
Hyperresolution becomes a very natural and intuitive inference rule, particularly

in the case where the positive clauses contain only one literal, if one notices that
the clause

CL L1 12 L3
is equivalent to (L1 A L2) — L3. Thus hyperresolution is the process of deriving
the conclusion of an inference, given all of the hypotheses. For example, the
statement that if X and Y are both elements of S then so is their product F(X, Y)
can be represented by the clause

CL —EL(X,S) -EL(Y,S) EL(F(X,Y),S).

Then from CL EL(A, S) and CL EL(B, S) hyperresolution derives CL
EL(F(A, B), S).

3.3. Demodulation. The equality predicate plays a special role in the theorem
prover used in this investigation. Whenever a clause of the form CL
EQUAL(T1, T2) was derived in this problem, it was added to a list of rewrite rules
called demodulators. (One has the option with our program of treating none, some,
or all new equalities as demodulators.) Demodulation is the process of replacing the
term T'1 by the term T2 in any derived clause if FEQUAL(T1, T2) is a demodula-
tor. Furthermore, if T1’ can be obtained from 7’1 by a substitution for some of
T1’s variables (i.e. T1’ is an instance of T1) and T2’ is obtained from 72 by
applying the same substitution, then we may replace 71" by T2’ in any derived
clause. Newly derived demodulators are also applied to existing clauses. Multiple
demodulators can be applied in a single step. A variety of techniques exist to
prevent looping. Finally, all terms are assigned a measure of complexity and

SEMIGROUPS, ANTIAUTOMORPHISMS, AND INVOLUTIONS 539

tie-breaking rules exist so that there is a canonical way of ordering the arguments
of equalities so that “simpler” terms always occur on the right. As an example,
consider the following set of clauses

(1) CL EQUAL(F(A), B) (demodulator),

(2) CL EQUAL(G(X), F(X)) (demodulator),

) CL -P(Y) @),

(4) CL P(G(A)).

The clause CL Q(B), the result of clashing (3) against (4) and applying first (2)
and then (1) as demodulators, is derived by the theorem prover in a single step.

3.4. Subsumption. When a clause is derived which is a logically weaker statement
than a clause which already exists, in most cases the new clause is immediately
deleted. For example, if CL P(VO0, V1, V2, V2) is an existing clause and CL
P(4, B, C, C) is derived, it is immediately deleted, although CL P(4, B, C, D)
would not be deleted. The new clause is said to be subsumed by the old clause. Old
clauses may also be subsumed by new clauses.

3.5. Standard Use of a Automated Theorem Prover. The theorem-proving program
used in the present investigation [3], [4], [5] was originally designed to find proofs
of theorems. This is accomplished by providing as input clauses a set of axioms for
a particular domain and a set of clauses representing the negation of the statement
of the theorem to be proved. Derivation by the theorem prover of the empty clause
then signals a contradiction, since the empty clause results from clashing CL P with
CL — P. The derivation history of the empty clause then provides a proof of the
theorem.

One major point of this paper is to show how such a theorem prover can be used,
without any new programming, in a completely different way. In investigating the
existence of semigroups with certain properties, the theorem prover was used more
as an algebraic and logical calculator. This change of use was accomplished merely
by using special types of input clauses, so that the required calculations could be
accomplished through hyperresolution and demodulation. The following section
describes how this was done.

4. Use of the Theorem Prover in Investigating Semigroups. In this section we
demonstrate in considerable detail exactly how the standard theorem-proving
concepts described in the preceding section were used in the investigation de-
scribed in Section 2. It is to be emphasized that no new programming specific to
this problem was done. An existing theorem-proving program was used, with input
clauses specially designed for this investigation. It is hoped that this will serve as an
example of nonstandard use of a theorem prover which will inspire other uses of
existing theorem-proving programs by researchers outside the theorem-proving
community.

Recall from Section 2 that in the investigation described there the theorem
prover was used to examine the consequences of adding various relations to a
semigroup with four generators, cyclicly permuted by an antiautomorphism H,
made finite by the relations equating all products of four or more elements. In the
following sections, we describe

(i) the input clauses which describe the basic semigroup S, the antiautomorphism
H, and the further relations to be added to define a new semigroup,

540 S. K. WINKER, L. WOS AND E. L. LUSK

(i) the input clauses which cause new relations forced by the fact that multiplica-
tion must be well defined in the new semigroup,

(iii) the input clauses which cause new relations forced by the fact that H must
be well defined in the new semigroup,

(iv) the input clauses which cause the theorem prover to check for the presence
of antiautomorphisms of order two.

4.1. Defining the Original Semigroup with Clauses. In what follows, variables
(assumed to be all universally quantified, as explained in Section 3.1) are repre-
sented by the symbols V0, V1, V2,.... Multiplication in the semigroup is
represented by the function F, so that F(V0, ¥V'1) represents the product of V0 and
V1. The generators of the semigroup are represented by B, C, D, and E. The
antiautomorphism which permutes the generators is represented by H.

The first clause represents associativity. It becomes a demodulator which
canonicalizes products by associating them to the right.

1 CL EQUAL(F(F(VO0, V1), V2), F(V0, F(V1, V2))).
The next clause says that all products of four or more elements are equal to BBBB.
2 CL EQUAL(F(VO, [(V1, F(V2, V3))), F(B, F(B, F(B, B)))).
Next we describe the action of H on the generators and extend it to products.
3 CL EQUAL(H(B),C)
4 CL EQUAL(H(C), D)
5 CL EQUAL(H(D),E)
6 CL EQUAL(H(E), B)
7 CL EQUAL(H(F(VO, V1)), F(H(V1), H(V0))).
All of these become demodulators.

4.2. Multiplication is Well Defined. The existence of one relation implies others,
since multiplication is well defined. For example, the relation BB = CC implies the
relation BBD = CCD. This was handled in the following way. All equalities of
products were represented by equalities with a variable concatenated to the
product on each side of the equality. For example BB = CC is represented by the
clause

CL EQUAL(F(B, F(B, V0)), F(C, F(C, V0))).
Thus although the relation BBD = CCD is not explicitly derived, if the term BBD
occurs in any derived clause, it will immediately be demodulated by the above
clause to CCD. Similarly, if DBB occurs, since it will be represented as
F(D, F(B, F(B, V0))), the demodulator will apply.

When it is desired to remove this formal variable (see 4.3 and 4.4), the following
clauses are used. The function REMVAR stands for “remove variable.”

8 CL EQUAL(REMVAR(F(VO0, V1)), V0)
9 CL EQUAL(REMVAR(F(VO, F(V1, V2))),
F(V0, REMVAR(F(V'1, V2)))).

The theorem prover prevents clause 8 from demodulating clause 9, and, in
situations where both demodulators may apply, applies clause 9 first.

SEMIGROUPS, ANTIAUTOMORPHISMS, AND INVOLUTIONS 541

There is also a more subtle way in which a given set of relations may force the
addition of more relations because multiplication is well defined. For example, the
relations AB = D and BC = E imply both that ABC = DC and ABC = AE. The
technique described in the preceding paragraph does not add this relation, either
implicitly or explicitly. The following clauses are used to add relations which are
forced in this way, essentially by transitivity of equality.

10 CL —EQUAL(VO, V1) —EQUAL(VO, V2) EQUAL(V1,V2)
11 CL - EQUAL(F(VO, V1), V2) —EQUAL(V1, V3)
EQUAL(F(V0, V3), V2)
12 CL —EQUAL(F(VO, F(V1,V2)),V3) —EQUAL(V2, V4)
EQUAL(F(V0, F(V1, V4)), V'3)
13 CL —EQUAL(F(VO, F(V1, F(V2, V3))), V4) —EQUAL(V3, V5)
EQUAL(F(VO, F(V1, F(V2, V5))), V4).

To see exactly how these clauses work, consider how AB = D and BC = E derive
AE = DC. The relations AB = D and BC = E will be input as

CL EQUAL(F(A, F(B, V0)), F(D, V0)) and
CL EQUAL(F(B, F(C, V0)), F(E, V0)), respectively.

Hyperresolution will clash these against the first two literals in clause 11 substitut-
ing F(C, V0) for V0 in the first of these and with the following substitutions for
the variables in clause 11:

Vo= 4

V1= F(B, F(C, V0))
V2 = F(D, F(C, V0))
V3 = F(E, V0).

The resulting clause is
CL EQUAL(F(A, F(E, V0)), F(D, F(C, V0))),

as desired.

4.3. The Effect of H in Adding Relations. Recall that we are trying to modify the
semigroup S, which has an antiautomorphism H, by adding relations to S in such a
way that the semigroup thus formed still has a well-defined antiautomorphism
inherited from H. This means that for each relation added, its image under H must
also be added. For example, since H(B) = C and H(C) = D, the relation BB =
BC forces the relation CC = DC. In order to accomplish this, only one more
clause is needed:

14 CL —EQUAL(F(VO, V1), V2)
EQUAL(F(H(REMVAR(V1)), F(H(V0), V3))),
(F(H(REMVAR(V2)), V3)).

Thus from BB = BC, which is represented by
CL EQUAL(F(B, F(B, V0)), F(B, F(C, V0)))

542 S. K. WINKER, L. WOS AND E. L. LUSK

we get, using clause 14,
CL EQUAL(F(H(REMVAR(F(B, V0)))), F(H(B), V1),
F(H(REMVAR(F(B, F(C, V0))))), V1),
which demodulates, using clauses 8 and 9, to
CL EQUAL(F(H(B), F(H(B), V1))), F(H(F(B, C)), V1),
which demodulates, using clauses 7, 3 and 1, to
CL EQUAL(F(C, F(C, V0)), F(F(D, C), V0)),
which demodulates, using clause 1, to
CL EQUAL(F(C, F(C, V0)), F(D, F(C, vV0))),
as desired.

4.4, Checking for involutions. So far we have shown how to represent relations
and how the theorem prover automatically adds relations which are implied by
these relations. In this section we describe those clauses input to the theorem
prover to cause it to check for the presence of an involution in the semigroup that

results from adding these relations to the original semigroup S. It is in this situation
that subsumption will be used.

In Section 2.2 we discussed how one may narrow the search for involutions by
considering only those which permute the generators. Therefore one may check for
involutions by checking the permutations of the generators which have order 2.
There are nine such permutations.

(BC)(D)(E) (B)CD)E) (BC)(DE)
(BD)(C)E) (B)CE)D) (BD)(CE)
(BE)(C)(D) (B)C)(DE) (BE)(CD)
These are checked, in order, in a single theorem-proving run, but it will suffice to

demonstrate what clauses are input to check for the presence of one involution.
To input the involution to be checked, the clause

CL PERM(X,Y,Z, W)
is input, where X, Y, Z, and W represent the images of the generators B, C, D, and

E under the involution. For example, to check for the presence of the involution
(BC)(D)(E), we use the clause

CL PERM(C, B, D, E).
In order to cause the input of a PERM clause to automatically generate a

collection of demodulators corresponding to specifying the values of the involution
J on the generators, we introduce the following clauses.

15 CL —PERM(VO,V1,V2,V3) —PERMSEL(VO, V1, V2, V3, V4, V5)
EQUAL(J(V4), V5)

16 CL PERMSEL(VO, V1, V2, V3, B, V0)

17 CL PERMSEL(VO, V1, V2,V3,C, V1)

18 CL PERMSEL(VO, V1, V2, V3, D, V2)

19 CL PERMSEL(VO, V1, V2, V3, E, V'3).

SEMIGROUPS, ANTIAUTOMORPHISMS, AND INVOLUTIONS 543

Thus, for example, input of the clause
CL PERM(C, B, D, E)
will cause generation of the clauses

CL EQUAL(J(B), C)
CL EQUAL(J(C), B)
CL EQUAL(J(D), D)
CL EQUAL(J(E), E).

The clause which says J is an antiautomorphism is
20 CL EQUAL(J(F(VO, V1)), F(J(V1), J(V0))).

In order for permutation of the generators of the original semigroup S to give
rise to an involution on the new semigroup, it must remain well defined in the
presence of all the relations being added. That is, if XY = Z then J(Y)J(X) =
J(Z). This statement is represented by the clause

21 CL —EQUAL(F(VO, V1), V2)
EQUAL(F(F(J(REMVAR(V1)), J(V0)), V'3),
F(J(REMVAR(V2)), V3)).

The various relations are clashed against the first literal in clause 21. If an
involution is inheritable to the new semigroup, the two arguments of the second
literal must be identical, after all demodulators are implied. If this happens, the
resulting clause will be subsumed by the input clause

22 EQUAL(VO, V0).

Therefore we can tell whether the new semigroup supports an involution in-
herited from S by seeing whether any clauses are generated from clause 21. If at
least one clause is generated (and not subsumed) from clause 21 for each of the
nine input PERM clauses, then the resulting semigroup has no involutions. If a
clause is generated by clause 21 and kept, then the generated clause describes the
contradiction which blocks the existence of the proposed involution.

The reader may recognize at this point that difficulties associated with the word
problem need to be dealt with, since we are relying on the generated set of
demodulators to reduce equal expressions to identical expressions. In fact, our set
of demodulators forms a complete set of reductions [2] and so all equal expressions
will indeed be reduced to identical ones. The demodulators have the finite termina-
tion property since the universe of terms for this problem was well ordered by our
program and, when a demodulator is applied, the resulting term is less than the
original term in the well ordering. They have the unique termination property since
they apply to one another. If EQUAL(A, B) and EQUAL(A, C) both occur, then
the first demodulates the second to EQUAL(B, C), deleting EQUAL(A, C) but
maintaining its effect, since the term 4 will now demodulate first to B and then to
C. Therefore it is impossible for a term to demodulate to two different terms.

For example, consider the example of order 7 which was found. The input
relations were: BC = BB, DD = BB, and all products of three or more elements
equal to BD, as well as to CE, EC, and CB.

544 S. K. WINKER, L. WOS AND E. L. LUSK

This semigroup is described by entering the following clauses:

CL EQUAL(F(B, F(C, V0)), F(B, F(B, V0)))
CL EQUAL(F(D, F(D, V0)), F(B, F(B, V0)))
CL EQUAL(F(C, F(E, V0)), F(B, F(D, V0)))
CL EQUAL(F(E, F(C, V0)), F(B, F(D, V0)))
CL EQUAL(F(C, F(B, V0)), F(B, F(D, V0)))
CL EQUAL(F(VO, F(V1, F(V2, V3))), F(B, F(D, V3))).

The methods of Sections 4.2 and 4.3 cause many other relations (demodulators) to
be generated, among them

101 CL EQUAL(F(C, F(D, V0)), F(B, F(D, V0))).
The involution (BC)(D)(E) is considered by entering the clause

CL PERM(C, B, D, E),

which produces a set of demodulators as described above. When clause 101 is
clashed against clause 21 the result is

CL EQUAL(F(F(J(REMVAR(F(D, V0)))), J(C)), V3),
F(J(REMVAR(F(B, F(D, V0)))), V3).
This is then immediately simplified, using all available demodulators, to
126 CL EQUAL(F(B, F(D, V0)), F(B, F(E, V0))).

This clause is a new relation, and hence represents a contradiction. The exact
nature of the contradiction is as follows. The relation CD = BD (CL 101) is a
consequence of the input relations. Applying J to both sides give us BD = BE (CL
126), which is false in the semigroup being considered. The other possible involu-
tions are eliminated similarly. In fact, clauses can be constructed which cause the
theorem prover to loop through the possible involutions in one run.

Conclusion. The mathematical results contained here are of interest in their own
right. Moreover, we have attempted to show by example how one might use a
general purpose theorem-proving program as a tool in mathematical research.

Appendix. There are exactly four semigroups of order seven which support an
antiautomorphism but no involution. One is given in Section 2.3 above. The
remaining are:

0N~ 0 /O o8

[S YK YRS T S L O RN
® 0 0 0 0 & | o
[S Y T Y T Y o}
Q0 0 8 00
I S YO SR YO N, MO N I Y
R0 a8 0 8 8|S
a8 6 6 & 6 o |0

SEMIGROUPS, ANTIAUTOMORPHISMS, AND INVOLUTIONS 545

a b c d e g
a f f f g e e e
b e g e g e e e
c f g f f e e e
d e g e g e e e
e e e e e e e e
f e e e e e e e
g e e e e e e e

a b c d e f g
a f f g g e e e
b e g e f e e e
c g g f f e e e
d e f e g e e e
e e e e e e e e
f e e e e e e e
g e e e e e e e

For all three semigroups, the antiautomorphism acts as follows:
h(aA)=b h(b)=c h(c)=d h(d)=a
h(e) =e h(f)=g h(g) =1/

Applied Mathematics Division
Argonne National Laboratory
9700 South Cass Avenue
Argonne, Illinois 60439

Applied Mathematics Division
Argonne National Laboratory
9700 South Cass Avenue
Argonne, Illinois 60439

Computer Science Division
Northern Illinois University
DeKalb, Illinois 60115

1. C. L. CHANG & R. C. T. LEg, Symbol Logic and Mechanical Theorem Proving, Academic Press, New
York, 1973.

2. D. E. KNnutH & P. B. BENDIX, “Simple word problems in universal algebras,” Computational
Problems in Abstract Algebras (J. Leech, Ed.), Pergamon Press, New York, 1970, pp. 263-297.

3. J. D. McCHAREN, R. A. OverBEEK & L. Wos, “Complexity and related enchancements for
automated theorem-proving programs,” Comput. Math. Appl., v. 2, 1976, pp. 1-16.

4. J. D. MCCHAREN, R. A. OVERBEEK & L. Wos, “Problems and experiments for and with automated
theorem-proving programs,” IEEE Trans. Comput., v. C-25, No. 8, 1976, pp. 773-782.

5. R. A. OVERBEEK, “An implementation of hyper-resolution,” Comput. Math. Appl., v. 1, 1975, pp.
201-214.

6. S. WINKER & L. Wos, Automated Generation of Models and Counterexamples and Its Application to
Open Questions in Ternary Boolean Algebra, Proc. 8th Internat. Sympos. on Multiple-Valued Logic,
Rosemont, Illinois, May 1978, IEEE, New York and ACM, New York, pp. 251-256.

